第83章(1 / 4)

投票推荐 加入书签 留言反馈

  证明:对任意大于1的整数k,总存在k个互不相同且大于1的整数n1,n2,…,nk,使得d(n1)nd(n2)n…nd(nk)的元素个数大于或等于2。

  这是复赛试卷解答题的第一题。

  如果放在高考或相关模拟卷里,这题应该是少数那些只有很擅长数学的尖子生,经过一番努力思考,才能做出来的困难题。

  而且,这还得看运气,万一他们脑子思路不顺,打了死结,怎么都绕不过那个弯子,就直接玩完,基本是拿不到这题的步骤分的。

  但放在今年h复赛试卷题目里,其实就是一道开胃菜。

  属于简单送分系列。

  在明夏眼中,更是绝对的套路题。

  这题目还用想吗?就随便写啊。

  首先,设a1,a2…a(k+1)为k+1个不同的正奇数,且其中任意一个数小于其他k个数的乘积,将之记为n,i=1,2,3…,取xi=1/2(n/ai+ai),yi=1/2(n/ai-ai)。

  之后就是代入和计算,再设x(k+1)=in{x1,x2,…,x(k+1)},最后,得出x(k+1)>y(k+1)的式子,即可得知,唯二的两个元素就是2x(k+1)和2y(k+1)。

  直接就能证明题目的结论是成立的。

  明夏手中的笔一直在动,在试卷上落下清晰、工整的一行行解析,脑中一边思考着题目的逻辑,一边叹气这个计算过程的复杂。

  题目不难,就是要绕弯子,步骤转啊转的,她写得手腕都酸了,又不能跳。因为,按照现在的理论发展,结合考虑有h参赛选手的正常水平,她现在写的每一步,都是题目的解答逻辑里必不可少的一环。

  答完了两道解答题,明夏休息地甩了甩右手,左手抬起,搁在桌子上,单手撑头,便继续往下答题。

  *
↑返回顶部↑

章节目录